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Abstract 

The recently secured mathematical formalism of direct 
methods is here generalized to the case that the atomic 
scattering factors are arbitrary complex numbers, thus 
including the special case that one or more anomalous 
scatterers are present. Once again the neighborhood 
concept plays the central role. Final results from the 
probabilistic theory of the two- and three-phase 
structure invariants are briefly summarized. In par- 
ticular, the conditional probability distribution of the 
three-phase structure invariant, given the six magni- 
tudes IEI in its first neighborhood, is described. The 
distribution yields an estimate for the three-phase 
structure invariant which is particularly good in the 
favorable case that the variance of the distribution 
happens to be small (the neighborhood principle). 
Particularly noteworthy is the fact that, in sharp 
contrast to all earlier work, the estimate is unique in the 
whole range 0 to 2n. An example shows that the 
method is capable of yielding unique estimates for tens 
of thousands of three-phase structure invariants with 
unprecedented accuracy, even in the macromolecular 
case. The clear implication is that the fusion of the 
traditional techniques of direct methods with 
anomalous dispersion, which is described here, will 
facilitate the solution of those crystal structures which 
contain one or more anomalous scatterers. 

1. Introduction 

Most crystal structures containing as many as 80-100 
independent nonhydrogen atoms are more or less 
routinely solvable nowadays by direct methods. On the 
other hand, it has been known for a long time 
(Peerdeman & Bijvoet, 1956; Ramachandran & 
Raman, 1956; Okaya & Pepinsky, 1956) that the 
presence of one or more anomalous scatterers facili- 
tates the solution of the phase problem; and some 
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recent work (Kroon, Spek & Krabbendam, 1977; 
Heinerman, Krabbendam, Kroon & Spek, 1978), 
employing Bijvoet inequalities and the double Patterson 
function, leads in a similar way to estimates of the sines 
of the three-phase structure invariants. Again, some 
early work of Rossmann (1961), employing the 
difference synthesis (IFHI -- IF•I) 2 in order to locate the 
anomalous scatterers and recently applied by Hen- 
drickson & Teeter (1981) in their solution of the 
crambin structure, shows that the presence of 
anomalous scatterers facilitates the determination of 
crystal structures. This work strongly suggests that the 
ability to integrate the techniques of direct methods, in 
particular the recent advances in the mathematical 
formalism, with anomalous dispersion would lead to 
improved methods for phase determination. The pre- 
sent paper is devoted to this task. That the anticipated 
improvement is in fact realized is also shown (Tables 1 
and 2 and Fig. 1). Not only do the new formulas lead to 
improved estimates of the structure invariants but, 
more important still, because the distributions derived 
here are unimodal in the whole interval (0,2n), the 
twofold ambiguity inherent in all the earlier work is 
removed. It is believed that this resolution of the 
twofold ambiguity results from the ability now to make 
use of the individual magnitudes in the first neigh- 
borhood of the structure invariant and the avoidance of 
explicit dependence on the Bijvoet differences; the 
explicit use of the Bijvoet differences, as is done in all 
previous work, leads apparently to a loss of infor- 
mation resulting in a twofold ambiguity in estimates of 
the structure invariants. It may be of some interest to 
observe that in the earlier work with anomalous 
dispersion only the sine of the invariant may be 
estimated; in the absence of anomalous scatterers only 
the cosine of the invariant may be estimated; as a result 
of the work described here both the sine and the cosine, 
that is to say the invariant itself, may be estimated. 
Since, in the presence of anomalous scatterers, the 
observed intensities are known to determine a unique 
enantiomorph, and therefore unique values for all the 
structure seminvariants, formulas of the kind described 
here should not be unexpected; nevertheless not even 
their existence appears to have been anticipated. 
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In the present paper the final results from the 
probabilistic theory of the three-phase structure in- 
variant are concisely described. The joint probability 
distribution of the six structure factors E . ,  EK, EL, EO, 
E~,, Er_, where H + K + L = 0, which plays the central 
role in the probabilistic theory of the three-phase 
structure invariant, is briefly described in Appendix I. 
This distribution leads directly to the major result of 
this paper, equation (3.65), the conditional probability 
distribution of the three-phase structure invariant, 
assuming as known the six magnitudes in its first 
neighborhood. Owing to their extreme length, details of 
the derivations are omitted altogether. A brief account 
of the two-phase invariant is also given. Particularly 
noteworthy is the use of the neighborhood principle 
first formulated in 1975 (Hauptman, 1975a). 

In the presence of anomalous scatterers the nor- 
malized structure factor 

EH = IEHI exp(icpn) (1.1) 

is defined by 

1 ~ 
E" = a-~./2 2 f j .  exp(2~ziH.rj) , (1.2) 

II .j= 1 

1 N 

't,~./2 ~.: Ifwl expli(6J" + 2rcH.ri)l, (1.3) 

where 

fjH ---- I fjnl exp(iSjn) (1.4) 

is the (in general complex) atomic scattering factor (a 
function of Inl as well as of j) of the atom labeled j, rj 
is its position vector, N is the number of atoms in the 
unit cell, and 

N 

. . =  ~ I£.J 2. (1.5) 
j = l  

For a normal scatterer, 6jH = O; for an atom which 
scatters anomalously, 5j. 4= O. Owing to the presence of 
the anomalous scatterers, the atomic scattering factors 
f j . ,  as functions of sin 0/2, do not have the same shape 
for different atoms, even approximately. Hence the 
dependence of the f j .  on I HI cannot be ignored, in 
contrast to the usual practice when anomalous scat- 
terers are not present. For this reason the subscript H is 
not suppressed in the symbols fin and all, equation 
(1.5). 

The reciprocal-lattice vector H is assumed to be 
fixed, and the primitive random variables are taken to 
be the atomic position vectors rj which are assumed to 
be uniformly and independently distributed. Then EH, 
as a function, (1.3), of the primitive random variables 
rj, is itself a random variable and, as it turns out, 

<fEEl2}, = 1. (1.6) 

2.  T h e  p r o b a b i l i s t i c  t h e o r y  o f  the  t w o - p h a s e  s t ruc ture  

i n v a r i a n t  ~PH + ~PA 

Replacing H by H in (1.1)and (1.3), and employing 

fj.n = fin, (2.1) 

one obtains 

and 

En = IEnl exp(&pn) (2.2) 

1 N 

En--- ~ ~ IfjHI expl i (~H- 2zcH. rj)l. (2.3) 
H j = l  

Thus the two-phase structure invariant, 

q/= ~PH + ~Pn, (2.4) 

as a function of the primitive random variables rj, is 
itself a random variable. A subsidiary goal in the 
present paper is to describe the conditional probability 
distribution of ~, assuming as known the two magni- 
tudes IEHI, IEnl which, owing to the breakdown of 
Friedel's law, are in general distinct. This distribution 
leads to an estimate of the two-phase structure 
invariant which is particularly good in the favorable 
case that the variance of the distribution happens to be 
small (the neighborhood principle). Thus the first 
neighborhood of the two-phase structure invariant ~ is 
defined to consist of the two magnitudes 

IEHI, IEnl. (2.5) 

Define CH and Sn by means of 

1 N 

CH = h--~H ~J~ Ifj .  l 2 COS 24H, (2.6) 

1 U 
SH = --~--~ I fjH 12 sin 20 m, (2.7) 

a H  j~.= 

where fjH, 5j H, and aH are defined in (1.4) and (1.5). 
Define X and ~ by means of 

X cos ~ = CH, X sin ~ = --SH, (2.8) 

X = (C~ + S~) '/2, tan ~=  -SH/CH. (2.9) 

Then the joint probability distribution of the magni- 
tudes IEHI, IEAI and the phases ~PH, ~Pn of the Friedel 
pair EH, En is given by 

R/~ { R 2 + K  2 
P(R,R; q~, ~) -- 7r2( 1 Xz) exp --  1 - -X  z 

/ 2 R R X  
+ - - c o s ( ~ +  ~ + ~ )  (2.10) 

1 - X  2 ' 
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and of the magnitudes IEHI, lEvi alone by 

4 
P ( R , R )  - - -  

1 - - X  2 R R  exp - I 0 X 2 , 
1 - X  2 1 -- 

(2.11) 

where I 0 is the modified Bessel function. 
Suppose now that R and /~, instead of being 

variables as in (2.10) and (2.11), are fixed non-negative 
numbers. Then the conditional probability distribution 
of the two-phase structure invariant (On + (on, given that 

IEHI=R,  I E n I = R ,  (2.12) 

( / 2 R R X  
x exp cos ( 7 ~ + ~ (2.13) 

1 - X  2 

From (2.11) it follows that the correlation coefficient of 
the Friedel pair I E . I  2, I Enl 2 is 

r = X  2, (2.14) 

where X is defined by (2.9). Since (2.13) has a unique 
maximum at ~' = -~,  it follows that 

(OH + (on "~ --~ (2.15) 

provided that the variance of the distribution (2.13) is 
small, i.e. provided that 

2 R R X  
A - - -  is large. (2.16) 

1 - X  2 

It should be noted that, while A depends on R, R and 
I HI, for a fixed chemical composition ~ depends only 
on I HI (or sin 0/2) and is independent of R and/~. 

In view of (2.9), 

r = X 2 = C~ + S~, (2.17) 

where CH and SH, as given by (2.6) and (2.7), are seen 
to be functions of I HI. Hence r is also a function of 
I HI. It follows that if, instead of fixing H and averaging 
over rj, the crystal structure is supposed to be fixed and 
the correlation coefficient r of the Friedel pair (IE.12, 
IEnl 2) is calculated for those reciprocal-lattice vectors 
H for which I HI (or sin 0/2) is fixed, i.e. over a 
spherical shell in reciprocal space, then (2.17) still holds 
even though the corresponding average value of I EHI2 
(or of IEnl 2) may no longer be unity. 

3. The probabil ist ic  theory o f  the three-phase  structure 
invariant 

3.1. Probabi l i s t i c  b a c k g r o u n d  

It will be assumed throughout that H, K, and L are 
fixed reciprocal-lattice vectors satisfying 

H + K + L =  0. (3.1)  

Owing to the breakdown of Friedel's law there are now 
eight distinct three-phase structure invariants: 

~v0 = (0H + (OK + (or, (3.2) 

~'1 = --(on + (OK + (OL, (3.3) 

11/2 = (OH - -  (OH, -I- (OL, (3.4) 

1l/3 = (OH "+" ( O K -  (or-, (3.5) 

~'~ = (on + (og + (or_, (3.6) 

~T = -(O. + (OR + (or_, (3.7) 

~'~ = (on-  (OK + (or~, (3.8) 

(3.9) I//~ = (off -t- ( O K -  (OL- 

The first neighborhood of each of the three-phase 
structure invariants (3.2)-(3.9) is defined to consist of 
the six magnitudes: 

IEHI, IEKI, IELI, tERI, IERI, IErl (3.10) 

which, again owing to the breakdown of Friedel's law, 
are not in general equal in pairs. 

Fix the reciprocal-lattice vectors H, K, and L, 
subject to (3.1). Suppose that the six non-negative 
numbers R 1, R2, R3, RT, R~, and R~ are also specified. 
Define the N-fold Cartesian product W to consist of all 
ordered N-tuples (rl, r 2 . . . .  , rN), where rl, r z . . . .  , r N are 
atomic position vectors. Suppose that the primitive 
random variable is the N-tuple (r~, r 2 . . . . .  rH) which is 
assumed to be uniformly distributed over the subset of 
W defined by 

IEHI = R 1, IEKI = R2, IELI = R 3, (3.11) 

IEnI=RT,  IE~,I =R~,  IEr I=R~,  (3.12) 

where the normalized structure factors E are defined by 
(1.2). Then the eight structure invariants 

~'s, ~vj, j = 0, 1, 2, 3, (3.13) 

(3.2)-(3.9), as functions of the primitive random 
variables (rl, r 2 . . . . .  rH), are themselves random 
variables. 

Our major goal is to determine the conditional 
probability distribution of each of the three-phase 
structure invariants (3.2)-(3.9), given the six magni- 
tudes (3.11) and (3.12) in its first neighborhood, which, 
in the favorable case that the variance of the distri- 
bution happens to be small, yields a reliable estimate of 
the invariant (the neighborhood principle). 
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3.2. Notation and definitions 

CH and S .  have already been defined [(2.6) and 
(2.7)]. In a similar way CK, Sic, CL, and SL are defined. 

Then X l, ~l, Xz,  ~z, X3, ~3 are uniquely defined by 
equations (3.14)-(3.19):  

X l COS ~l : '~:Ca' X 1 sin ~l = - S . ,  

SH 
t a n ~ l -  Ca '  X I = (C~ + S2) 1/2. 

X 2 cos ~z = CK, X2 sin ~2 = - -SK'  

SK 
--  , X 2 = ( C  2 -b 8 2 )  1/2. tan ~2 CK 

X3 cos ~3 = CL, X3 sin ~3 = --SL, 

SL 
tan ~3 -- CL' X3 = (C2 + S[)l/2" 

Next, make the definitions: 

CHK L = 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

1 N 

(aHO[K~L)I/2 Z [ £ H £ K £ L [  COS(~jH 
j= l  

n t- 6jK -t" 6jL), (3 .20)  

1 N 

S H K L :  ((~HaK~L) 1/2 E [ £ H £ K £ L I  s in(RH 
j : l  

"Jr" 6jK q- RL ). (3.21) 

1 u 
C"KL=(~HaK~L)I/2j~=I [ £ H £ K £ L [  COS(--~jH 

Jr" •jK "+" 6jL), (3.22) 

1 ,v 

SHKL : ( aHaKaL) l /2  E I~JH~jK~jL] s i n ( - - R n  
j= l  

+ 6K + 60" (3.23) 

1 N 
~- . ~  I £ a  £ K  £L[  COS (RH 

C"~'L (O~H O~K O~L)I/2 .= 
J 1 

- - R K  -[- RE), (3 .24)  

1 N 
SH~,L : ~ I £ H £ K £  LI s i n ( R a  

(a l l  O~K aL)l/2 i = 1 

-RK + RL). (3.25) 

1 u 
= . ~  [ £ H  £ K  £ L  [ COS (6jH CHKL  (GH O~K aL)l/2 .= 

j 1 

+ R K -  RE), (3.26) 

1 N 
SaK E : ~ I £ n  £ K  £L]  sin (RH 

(al l  aKO~L) 1/2 j= l  

+ R K -  RE). (3.27) 

Yo = CHKL[ 1 -- (CH CK CL --  CH SK SL --  SH CK SL 

--  S H S K CL) ] -t- SHKL[ S H S K S L - S H C K C L 

- C H SK CL - -  C s CK SL] 

q- C~KL[--C H "k- (C  K C L -- S K SL) ] 

-I- S~IKL [ S H -f- (C  K S L --f- S K CL)] 

+ CHRL[--C K -a t- (C  H CL -- S a SL)] 

Jr- SH~,L [ S K q- (C  H S L -q-- S H CL)] 

-I- CHKE[--C g -k- (C a C K - S 8 SK)] 

+ SHKE[ SL + (CH SK + SH CK)]. (3.28) 

(70 : CHKL[ SH SK SL -- S .  C K C L - C H S K C L 

- C H C K SL] -I- SHKL[ 1 + (Ca CI~ CL 

- -  C H S K S g - -  S .  C K S g - -  S a S K Cg)]  

C~IKL[--S" -f- (C  K S L --t- S K CL) ] + 

-t- S~IKL[--C H -- (C K C L - S K SL) ] 

-f- CH~,L[--SK -f- (CH SL "+" SH CL)] 
-Jc" SH~L[--C K -- (C a C L - S H SL) ] 

+ C.K~[--SL + ( C .  SK + SH COl 

"1- SHKE[--C L -- (C H C K -- S H SK) I. (3.29) 

~l = CHKL[--CH "+" (CK CL -- SK SL)] 

+ S.KL[--S,  + (CK SL + SK CL)] 

"~ C~KL[ 1 - (CH CK C L -- C H S K S L 

+ SH CK SL + S .  SK CL)] 

-f- S~IKL[--(S 8 S K S g - S a C K C L -t- C H S K C L 

q- C H CKSL) ] -k- CH~,L[--C g -+- (C  H CK 

-I- S H SK) ] -t- SH~L[--S L -- (C  H SK 

-- S a CK)] -4- CHK[.[--C K -f- (C  a Cg 

--[- S s SL)] -k SHKE[--S K -- (C  a SL -- S .  Cg) ]. 

(3.30) 

(71 : CHKL[S H -'t- ( C K S  t -I- Sg CL)] 
-I- SHKL[--C H -- (C  K C L - S K Sg)] 
-Jr- CRKL[--(S H SK Sg -- S H CK CL -f- C s SK CL 

Jr C H C K Sg)  ] -Jr- Sflgg[ 1 + (C H C K C g 

- -  C H S K S L -t- S .  C K S L -4- S H S K CL)] 

Jr CH~,L[--S g -q- (C H SK -- S H CK)] 

Jr SHkL[C L + ( C  H C K -I- S H SK) ] 

Jr CHKE[--S K -[- (C  H S g - -  S n CL)] 

+ SHKE[CK + (CH CL + S .  SL)]. (3.31) 
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Y2 = CHKL[--CK + (CH C L -  SH SL)] 

+ SHKL[--S K + (C  H SL + S H CL)] 

-'t'- C~KL[--C L + (C  K C H + S K SH) ] 

+ SnKL[- -S  L -- (C  K SH -- S K CH)] 

+ C.~,L[ 1 -- (CH CK CL + Cn SK SL 

- -  S .  CK SL + S .  SK CL)] 

+ S .~ ,L[ - (S .  SK SL + S .  CK CL -- CH SK CL 

+ C .  CK S01 + C . K d - - C .  + (CK CL 

+ SK SL)]  + SHKE[--S. -- (CK SL -- SK CL)]. 

(3.32) 

0" 2 = CHKL[S K + (CHS L + SH CL)] 

+ SHKL[--C K -- (C H CL -- S H SL)] 

+ C~IKL[--S L + (C K SH -- S K CH)] 

+ Sn~[CL + ( C ~ C .  + S~S . ) ]  

+ CH~,L[--(S H S K S L + S H C K CL -- C H SK CL 

+ CH CKSL)]  + SHRL[1 + (CH CK CL 

+ C .  SK SL - -  S .  C~ SL + S .  SK CL)] 

+ CnK~[-S.  + (CK SL -- SK CL)] 

+ S.~C[CH + (C~ CL + SK S01. (3.33) 

Y3 = CHKL[--CL + (CH CK -- SH SK)] 

+ SHKL[--S L + (C  H SK + S H CK)] 

+ C~L[--C~ + (CL C.  + SL S.)] 

+ S~KL[--S K -- (C  L SH -- S L CH)] 

+ CH~,L[--C H + (CLC K + SLSK)]  

+ S .~ ,L[ -S .  - (CL SK -- SL CK)] 

+ CHK[[ 1 -- (C  H C K C L -- C H S K S L 

+ S H CK SL -- S H SK CL)] 

+ S . K ~ [ - ( S .  SK SL + S .  CK CL + C .  SK CL 

- -C .CKSL)] .  (3.34) 

a3= C.~t[SL + (C.  SK + S .  CO] 

+ SHKL[--CL -- (CH CK -- SH SK)] 
+ C~L[- -S~  + (CL S .  -- SL C.)I 

+ Snu, t[CK + (CLC.  + SLSH)] 

+ C.~,L[-S .  + (CL SK -- SL CK)] 

+ SH~,L[C H + (C  K CL + S K SL)] 

+ CH~I--(SH SKSL + SH CK CL + CH SK CL 

-- C H C K SL)] + SHK[[ 1 + (CH CK CL 

+ CH S~ SL + S .  C~ SL -- S .  SK CL)]. (3.35) 

Then Zj  and ~j, j = 0, 1, 2, 3, are uniquely defined by 
equations (3.36) and (3.37): 

Z j c o s ~ j = y j ,  Z j s i n ~ j = o j ,  j = 0 , 1 , 2 , 3 .  (3.36) 

ej Z j  (y~ + rr2~/2~,j, , j 0, I, 2, 3. (3.37) tan ~j = - - ,  = = 
Yj 

In the definitions which follow R l, R 2, R3, RT, R~, R~ 
are the fixed values of the six magnitudes IE.I, IEKI, 
IELI, IEnl, IE~,I, lEt I, respectively 1(3.1 l) and (3.12)], 
and r~, r 2, r 3 are defined by 

el ( 2RjRjXJ)I_X~ 

r j =  , j =  1,2,3. (3.38) 

Io( 2RjRJXj)I_X2 

where I o and I I are the modified Bessel functions and 
X 1, X 2, and X 3 have been defined in (3.15), (3.17), and 
(3.19). 

C O = Zo[R l R 2 R 3 cos ~ + R TR~ R~ 1-1 1-2 1-3 

× cos(C, + ¢2 + ¢3 + ~)1 

+ ZI[R~R2R3 rl cos(~l - ~1) 

+ RIR~R~r2r3c°s(~2 + ~3 + ~'l)] 

+ Z2[R~ R~R3 z2 cos(~2 - ~2) 

+ RTR2R~rl  1-3 c°s(~l + ~3 + ~2)] 

+ Z3[R l R 2 R~ r 3 cos(~ 3 -  ~r3) 

+ RT R~ R 3 r~ r2 cos(~ + ~2 + ~3)1. (3.39) 

S O = ZolR ~ R2R 3 sin ~ - RTR~R~r~ r 2 r 3 

× sin(~l + ~2 + ~3 + ~)1 

- ZIIRTR2 R3 rl sin(~l - ~l) 

+ R1R~R~r2r3 sin(~2 + q~ + ~l)] 

- Z21R 1R~R~ r 2 sin(~ 2 - ~2) 

+ R i R 2 R ~ r  1 l" 3 sin(~ + ~3 + ~2)1 

- Z3[R 1 R 2 R~ r 3 sin(~ 3 -  ~3) 

+ R~ R~ R3 rl r2 sin(~l + ~2 + ~3)1. (3.40) 

C 1 = Z o I R I R 2 R 3 r  1 cos(~l + ~)  + R~R~R~r2r 3 

× cos(~2 + ~3 + ~)1 + Z~IRTR2R~cos ~1 

+ R ! R~R~r~ r 2 r 3 cos(--~ + ~2 + ~x3 + ~)] 

+ Z2IR~ R~R~rl r 2 c o s ( ~ -  ~2 + ~2) 

+ RTR2R~r3 cos(~3 + ~2)] 

+ Z3[R ~ R 2 R~'c~ r 3 cos(~X~- ~3 + ~'~) 

+ R i R~ R 3 l- 2 cos(~ 2 + ~3)1. (3.41) 
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$1 = Zo[R, R2 R3 2"1 sin(~l + ~ )  -- RrR~R~ r 2 2"3 

x sin(~ 2 + ~3 + (-o)] + ZIIRTR~R3 sin ¢, 

RI RERj2"~ 2"2 2"3 s in ( -¢~  + ¢2 + ¢3 + ¢1)] 

Z2[R , RER 3 r, 2-2 s i n ( ~ , -  ~2 + ~2) 

m 

+ 

- R I R 2 R ~ r 3  sin(C3 + ¢2)1 

+ Z3IR , R 2 R~1-~ r 3 s i n ( C , -  ¢3 + ¢3) 

- -  RiR~R3 1-2 sin(¢2 + ¢3)1. 

C2 = Zo[R~ RER3 rE C0S(¢2 + ~ )  

+ R~ R E R~ 2-, 2" 3 c0s (¢ ,  + ¢3 + ~0)] 

+ ZI[RiR2R3 2"122 C0S(--¢,  + ¢2 + ¢1) 

+ R l RER32- 3 cos (¢  3 + ¢,)1 

+ Z2[R~R~R3 cos ¢2 

+ RIR2R~1- l 2-~r~ cos (~  1 - ~2 + ¢3 + ¢2)] 

+ Z3[RIR2R~2-21-3c°s(¢2--¢3 + ¢3) 

+ RiRER31-, c°s (¢ l  + ¢3)]" 

$2 = Zo[R, R2 R31-2 sin(C2 + ~ )  

(3.42) 

(3.43) 

R ;  RE R~ r 1 l" 3 sin(¢~ + ¢3 + ~)]  

Z~[RTR2 R3 1"1 1"2 sin(--~l  + ~2 + ¢,) 

R~ R~R31" 3 sin(~ 3 + ¢~)] 

Z2[R , R~ R 3 sin ¢2 

RTR2R:~r I T2r 3 s i n ( ~ , -  ~2 + ¢3 + ¢2)] 

Z3[R, R2 Rj  1-2 1"3 sin (~2 - ¢3 + 'Ca) 

(3.44) 

+ 

+ 

-- RT R~ R 3 2 - ,  s i n ( ~ ,  + ¢3)]. 

C3 = Zo[RI R2 R3 v3 c°s(¢3 + ¢0) 

+ RTR~RTr~r2 c o s ( ~  + ~2 + ¢0)] 

+ Z,[RiR2 R3 1-, ~'3 COS(--¢, -q- ¢3 Jr- ¢,) 

+ R~R~R~r2cos(¢ 2 + ¢~)] 

+ Z2[R~ RER3 l"2 2"3 C0S(--¢2 + ¢3 "1- ¢2) 

+ R~R2R~r~ cos (e l  + ¢2)] 

+ Za[R~R2R~cos Ca 

+ R i R E R  3 v~ v 2 r 3 cos(C, + ¢2 - ¢3 + ¢3)]. 

(3.45) 
$3 = Zo[R~ R2 R3 v3 sin (~3 + ~0) 

- -  RT RE R~ r, r2 sin (¢, + ¢2 + ~o)] 

+ Z,[RTR2R3r  ~ r 3 s in(--¢,  + ¢3 + ¢~) 

- -  R l R~R~r2 sin(~2 + ¢~)] 

+ Z2[RI RE R3 rE r3 sin(--~2 + ¢3 + ¢2) 

- -RTR2R~r  I sin(C, + ¢2)] 

+ Z3[RiR2R~sin ¢3 

- -  R~  RE R 3 v, r2 r 3 s i n ( ~ ,  + ¢2 - ¢3 "~- ¢ 3 ) ] "  

(3.46) 

Co = Zo[RI Rz R3 rl r2 r3 c o s ( ~  + ~2 + ~3 + Go) 

+ RT R~ R~ cos ¢01 

+ ZI[RTR2R3r2r3c°s(~2 + ¢3 + ¢1) 

+ R 1 R ~ R ~ r  I cos (¢  l - ¢1)] 

+ ZE[R, R~R3 rl z3 c°s(¢1 + ~3 + ¢2) 

+ RT R2 R~ r2 cos (~2 - ¢2)1 

+ Z3[R1R2R~rl r2 c0s(¢i  + ¢2 + ¢3) 

+ R~R~R3 r3 cos(~3 - ¢3)]. (3.47) 

So = Zo[--RI R2 R3 Vl v2 v3 sin(C1 + ¢2 + ¢3 + Go) 

+ RTR~R~sin ¢01 

- Z,[R~R2 R3 r2 r3 sin(~2 + ¢3 + ¢1) 

+ R , R ~ R ~ r  I s in(¢  1 -  ¢1)] 

- Z2[R , RER 3 r I r 3 sin(~, + ~3 + ¢2) 

+ RTR2R~r2 sin(C2 - ¢2)] 

- -  Z3[RI R2R~rl r2 sin(el  + ¢2 + ¢3) 

+ RiRER3 r3 sin(~3 - ¢3)1. (3.48) 

CT = Zo[R, R2R3 r2 v 3 c0s(~2 + ~3 + (:.o) 

+ RTR~R~r, cos(~l  + ~)]  

+ ZI[RTR2 R3 rl r2 r3 c 0 s ( - ¢ 1  + ~2 

+ ¢3 + ¢1) + RI R2R~ cos ¢,] 

+ Z2[R, R2R3 r3 COS(¢3 + ¢2) 

+ R  i R  2R 3v Iv 2 c O S ( ~ , -  ¢2 + ¢2)1 

+ Z3[RI R2R~r2 c°s(¢2 + ¢3) 

+ RTR~R 3 r, r 3 co s ( ¢  1 - ¢3 + ¢3)]. (3.49) 

ST = Zo[--RI R2R 3 rE r 3 sin(C2 + ~3 + ~ )  

+ R~R~R~r~ s in(¢ 1 + ~o)] 

+ Z,[--RiR2R3 751 v2 2-3 sin(--~l  + ¢2 

+ ¢3 + ¢I) + R1R~R~sin ¢,] 

+ ZE[-R~ RER 3 z 3 s in(¢  3 + ¢2) 

+ RTR2R~rl r2 sin (¢1 - ~2 + ¢2)] 

+ Z3[ - -RI  RER~r2 sin(~2 + ¢3) 

+ R ~ R ~ R 3 r l r 3 s i n ( ¢ l - ¢ 3 +  ¢3)]. (3.50) 

C ~ = Z o [ R , R 2 R 3 r  1 r 3 cos(~,  + ¢3 + ¢o) 

+ RTR~R~r2 c0s(¢2 + ~o)] 

+ Z , [ R i R 2 R  3 r3 c0s(¢3 + ¢,) 

+ R1R~R~rl r2 c0s(--¢1 + ~2 + ¢1)] 

+ Z2[R , RER 3 r, 2" 2 1-3 COS(C, -- ¢2 

+ ¢3 + ¢2) + R~RER~cos ¢21 

+ Z3[Rl R2R~r, c°s(~ l  + ¢3) 

+ R~R~R3r2r3cos(~--¢3 + ¢3)]. (3.51) 
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S~= Zo[--R 1R2R 3 r~ 1-3 sin(~l + {3 + {0) 

+ R~R~_R~r2 sin({2 + ~0)1 

+ ZI I -R~Rz  R3 r3 sin(~3 + ~1) 

+ R 1R~R~1-~ r: sin(--{~ + {= + {1)1 

+ Z~[--RI R~R3 Z'l 1-2 l"3 sin(~, - ~2 

+ {3 + {2) + R~ R2 R~ sin {21 

+ Z3I-R ~ R2R~1-~ sin({~ + {3) 

+ R~R~R3 1-2 1-3 sin(~ 2 - {3 + {3)1. 

C 3 = Zo[R ~ R 2 R 3 r~ 1-2 c o s ( ~  + ~2 + ~ )  

+ R;R~R~1" 3 cos(~ 3 + Q)] 

+ Z~[RiRz R 31"2 cos(~ + ~1) 

+ R~ R~R~1"~ 1"3 COS(--~, + ~3 + if1)] 

+ Z2[R 1R~R 3 r~ cos(~ 1 + ~2) 

+ R~R2R~r 2 r 3 c o s ( - {  2 + {~ + ~2)] 

+ Z3IR 1R 2 R~r~ 1-2 1-3 cos({[ + ~2 

-- ~3 + ~3) + RIR~R3  cos  ~3]. 

S~ = Z o I - R  ~ R 2 R 3 1-~ 1-2 sin(g~ + g2 + ~0) 

(3.52) 

(3.53) 

+ RTR~R3v 3 sin(~3 + ~)1 

+ Z I I - R  i R2 R 3 l" 2 sin(~ z + ~) 

+ R1R~R~1"1 r3 sin(--~i + ~3 + ~)] 

+ Z2I - -R  1 R~R 3 r~ sin({~ + ~2) 

+ R~R2R~r2r 3 sin(-{= + {3 + ~2)] 

+ Z3[-R 1R 2 R~ r~ r z r 3 sin({ 1 + {2 

- {3 + ~3) + R~R~R3 sin ~3]. (3.54) 

Next, B j, ~ojB 3, and coy, j = 0, 1, 2, 3, are uniquely 
defined, by equations (3.55)-(3.58): 

Bj cos ¢o~. = C j, Bj sin coj = S j, j = 0 ,  1 ,2 ,3 , (3 .55)  

j = 0 ,  1,2,3,(3.56) 

j = 0, 1, 2, 3, (3.57) 

Sj  
tan ~oj=--~j, B i=  (C 2 + $2) '/2, 

B.7 cos Coy = C7, By sin coj = Sy, 

S~ 
t a n c o y = - - ,  By = (C 2 + S } )  , j = 0 , 1 , 2 , 3 ,  

C.): 

(3.58) 

where Cj, S j, Cy, Sy are given by equations (3.39)- 
(3.54). Finally, A j, Ay, Kj, and Ky are defined by 

2Bj 
j = 0 ,  1,2,3,  

(3.59) 

A j =  
(1 - X ~ ) ( 1  - X2)(1 - X ~ )  

2By 

A j -  ( I _ X Z ) ( I _ X ~ ) ( I _ X ] ) ,  
j = 0 ,  1 ,2 ,3,  

(3.60) 

(3.61) 

(3.62) 

Kj = 2zrl0(Aj), j = 0, 1, 2, 3, 

K 7 = 2rd0(Aj), j = 0, 1, 2, 3, 

where X 1, X 2, and X 3 have been defined in (3.15), 
(3.17), and (3.19), respectively. 

3.3. The conditional probability distribution of  each of  
the three-phase structure invariants ~j , j  = O, 1, 2, 3, O, 
1, 2, 3, (3.2)-(3.9), given the six magnitudes IEHI, 
IEKI, IEL[, IEnl, IEg[, IEtl in itsfirst neighborhood 

Refer to {} 3.1 for the probabilistic background. Then 
the eight three-phase structure invariants 

~,j, j = 0 , 1 , 2 , 3 , 0 , 1 , 2 , 3 ,  (3.63) 

(3.2)-(3.9), as functions of the primitive random 
variable (r 1, r 2 . . . . .  rN), are themselves random 
variables. Denote by 

P j ( ~ j l R  1, R2, R3, RT, R~, R~) = Pj(.f2j),  

j = 0 ,  1 ,2 ,3 ,0 ,  1 ,2 ,3,  (3.64) 

the conditional probability distribution of each ~uj, 
assuming as known the six magnitudes (3.11) and 
(3.12) in its first neighborhood. Then Po(O0), for 
example, is obtained from (I.4) of Appendix I by fixing 
R~, R 2, R3, RT, R~, R~ in accordance with (3.11) and 
(3.12), integrating P [equation (I.4)] with respect to ~ ,  
q~, q~,~ between the limits 0 and 2n, and multiplying by 
a suitable normalizing parameter. Again, P1(£21) is 
obtained from (I.4) in a similar way except that the 
integrations are taken with respect to ~1, q~, q~3, etc. 
The final formulas, the major results of this paper, are 
simply 

1 
Pj(I-2j) = ~ exp{Aj cos (12j -  ooj)}, 

j = 0 ,  1 ,2 ,3 ,0 ,  1 ,2 ,3,  (3.65) 

where the parameters A j, Kj, coj are defined by 
(3.20)-(3.37), (3.38)-(3.54), and (3.55)-(3.62). Since 
the Kfs  and Afs  are positive, the maximum of (3.65) 
occurs at ,c2j = a)j. Hence, when the variance of the 
distribution (3.65) is small, i.e. when Aj is large, one 
obtains the reliable estimate 

~,j=a)j ,  j = 0 , 1 , 2 , 3 , 0 , 1 , 2 , 3 ,  (3.66) 

for the structure invariant ~,j, (3.2)-(3.9). It should be 
emphasized that the estimate (3.66) is unique in the 
whole interval (0,2n) [or, equivalently, ( -n ,+n) ]  and is 
explicitly expressed via (3.20)-(3.65), together with the 
weight A j, in terms of the complex scattering factors 
f j , ,  fjK, fjt,, presumed to be known, and the observed 
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Table 1. Twenty-one estimates % (o) of  the structure invariants gtj (o) sampled from the top 2000 for the PtC142- 
derivative of  Cytochrome c55 o 

Estimated True Magnitude of 
Serial value % value the error 

no. IEHI IEfil [EKI lEvi IELI IE~J .4j of ~'j of t//j ItOj - -  ~tjl 

1 2- 17 2.04 0.89 1.03 0.85 0.67 6.92 --58 --88 30 
100 1.91 2.06 1 "61 1.49 0.85 0.67 5-62 148 130 18 
200 1.91 2.06 1.96 2.06 1-41 1.57 4-83 --79 --121 42 
300 2.36 2.48 1.56 1"69 0.82 0.68 4.52 52 2 50 
400 2.17 2.04 1.34 1.48 1.28 1.15 4.31 79 96 17 
500 1.85 1.94 0"85 0.67 0.78 0.92 4.21 56 42 14 
600 2.17 2.04 0.92 1-04 0"86 0.70 4. I0 146 148 2 
700 1.39 1.28 0.85 0.67 0"87 0.75 4.02 --72 --68 4 
800 1.41 1.57 1.61 1.49 0.71 0.85 3.93 70 50 20 
900 1.88 1.98 1.28 1.15 0.85 0.67 3.87 104 96 8 

1000 1.29 1.43 0.79 0.71 0.85 0.67 3.80 --88 --138 50 
1100 1.34 1.48 1.34 1.22 1.25 1.16 3.76 - 7 2  - 1 2 6  54 
1200 1.56 1.69 1.41 1.57 0-98 0.90 3.72 73 78 5 
1300 1.98 2.07 2.08 1.94 1.08 1.21 3-68 -161  - 1 2 4  37 
1400 1.56 1.67 1.41 1.57 1.24 1.33 3-63 - 7 2  - 3  69 
1500 2.38 2.50 1.91 2.06 0.74 0.64 3-59 84 77 7 
1600 1.91 2.06 1.34 1.22 0.72 0.83 3.55 - 6 4  - 9 4  30 
1700 1.91 2-06 2.02 2.12 2.15 2.24 3.51 - 6 4  - 7 2  8 
1800 2.38 2-50 1.61 1.49 0.78 0-90 3.46 78 82 4 
1900 2.38 2.50 1.63 1- 70 1.81 1-93 3-43 63 123 60 
2000 0.85 0.67 0.97 0.83 1.02 1.09 3.42 --96 --126 30 

magnitudes IEHI, IEKI, IELI, lEvi, IERI, lEt I, (3.11) 
and (3.12). No prior knowledge of the positions of the 
anomalous scatterers is needed, nor is it required that 
the anomalous scatterers be identical. 

4. The applications 

Using the presumed known coordinates of the PtC12- 
derivative of the protein Cytochrome %50 from Para- 
coccus denitrifieans (Timkovich & Dickerson, 1976), 
molecular weight M r ~_ 14 500, space group P212~2~, 
some 8300 normalized structure factors E [(1.3) and 
(2.3)] were calculated (to a resolution of 2.5 A). In 
addition to the anomalous scatterers Pt and CI, this 
structure contains one Fe and six S atoms which also 
scatter anomalously at the wavelength used (Cu Ka). 
Using the 4000 phases ~0hU corresponding to the 4000 
largest IEhktl'S with hkl 4= 0, the three-phase structure 
invariants ~,j,j = 0, 1, 2, 3, 0, 1, 2, 3, [(3.2)--(3.9)] were 
generated and the parameters o)j and Aj [(3.55)- 
(3.60)], needed to define the distributions (3.65), were 
calculated. All calculations were done on the VAX 
11/780 computer; double precision (approximately 15 
significant digits) was used in order to eliminate 
round-off errors. The values of the Aj's were arranged 
in descending order and the first 2000, sampled at 
intervals of 100, were used in the construction of Table 
1 ; the top 60 000 were used for Table 2. 

Table 1 lists 21 values of A j, sampled as shown from 
the top 2000, the corresponding estimates wj (in 
degrees) of the invariants ~,j, the true values of the ~j, 
and the magnitude of the error, I m j -  ~jl. Also listed 

Table 2. Average magnitude of  the error (o) in the top 
60 000 estimated values of  the three-phase structure 
invariants, cumulated in the nine groups shown, for 

the PtCI42- derivative of Cytoehrome csso 

Average 
Group Number in Average magnitude of 

no. group value of A error 

I 100 6.01 27.9 
2 500 4.90 29.3 
3 1000 4.44 28.8 
4 2 000 4.02 28.0 
5 5 000 3.49 31.4 
6 10000 3-09 33-8 
7 20000 2.71 36.1 
8 40000 2.35 38.6 
9 60000 2.15 39.8 

are the six magnitudes tEl in the first neighborhood of 
the corresponding invariant. 

Table 2 gives the average magnitude of the error, 

(1%- ~,/), (4.1) 
in the nine cumulative groups shown, for the 60 000 
most reliable estimates % of the invariants ¢Jj. 

Tables 1 and 2 show firstly that, owing to the 
unexpectedly large number of large values of A j, our 
formulas yield reliable (and unique) estimates of tens of 
thousands of the three-phase structure invariants. 
Secondly, the invariants Which are most reliably 
estimated lie anywhere in the range from - 1 8 0  to 
+ 180 °, and appear to be uniformly distributed in this 
range (Columns 9 and 10 of Table 1). Finally, in sharp 
contrast to the case that no anomalous scatterers are 
present, the most reliable estimates are not necessarily 
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of invariants corresponding to the most intense 
reflections but of those corresponding instead to 
reflections of only moderate intensity (Columns 2-7 of 
Table 1). 

Fig. 1 shows a scatter diagram of ~oj versus  qJj for 
the PtC1]- derivative of Cytochrome %5o, using 201 
invariants sampled at intervals of length ten from the 
top 2000, as well as the line o~j = ~j. Since the line falls 
evenly among the points, it appears that the ~ j  are 
unbiased estimates of the invariants ~j. 

5. Concluding remarks 

In this paper the goal of integrating the techniques of 
direct methods with anomalous dispersion is realized. 
Specifically, the conditional probability distribution of 
the three-phase structure invariant, assuming as known 
the six magnitudes in its first neighborhood, is obtained. 
In the favorable case that the variance of the 
distribution happens to be small, the distribution yields 
a reliable estimate of the invariant (the neighborhood 
principle). It is particularly noteworthy that, in strong 
contrast to all previous work, the estimate is unique in 
the whole interval (0,2~z) [or, equivalently, (-~z, zr)] and 
that any estimate in this range is possible (even, for 
example, in the vicinity of _+z r/2 or z0. The first 
applications of this work using error-free diffraction 
data have been made, and these show that in a typical 
case some tens of thousands of three-phase structure 
invariants may be estimated with unprecedented 
accuracy, even for a macromolecular crystal structure. 
Some preliminary calculations on a number of struc- 
tures, not detailed here, show that the accuracy of the 
estimates depends in some complicated way on the 
complexity of the crystal structure, the number of 
anomalous scatterers, the strength of the anomalous 
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Fig. 1. A scatter diagram of % versus v/j, using 201 invariants 
sampled at intervals of length ten from the top 2000, for the 
PtC1 ]- derivative of Cytochrome %s0, as well as the line % = q/j. 

signal, and the range of sin 0/2. With smaller structures 
the accuracy may be greatly increased, average errors 
of only three or four degrees for thousands of invariants 
being not uncommon. 

Inspection of the formulas, in particular (3.39)- 
(3.58), shows that the estimates, o~j, are relatively 
insensitive to errors in the observed IEl's provided that 
these errors are positively correlated for the Friedel 
pairs IEnl, IEnl. However, a detailed study of the effect 
of experimental errors is outside the scope of the 
present paper and will be presented at a future date. 

It should be stated in conclusion that the availability 
of reliable estimates for large numbers of the three- 
phase structure invariants implies that the traditional 
machinery of direct methods, in particular the tangent 
formula, suitably modified to accommodate the non- 
zero estimates of the invariants, may be carried over 
without essential change to estimate the values of the 
individual phases and thus to facilitate structure 
determination via anomalous dispersion. In view of the 
calculations summarized in Tables 1 and 2 and Fig. 1, 
it seems likely that, in time, even macromolecules will 
prove to be solvable in this way. It is clear too, that, 
owing to the ability to estimate both the sine and cosine 
invariants, that is to say both the signs and magnitudes 
of the invariants, the unique enantiomorph determined 
by the observed intensities is automatically obtained. 
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No. GM26195, Grant No. CHE-7911282 from the 
National Science Foundation, and a grant from the 
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APPENDIX I 
The joint probability distribution of the six structure 

factors En, EK, EL, EN, E~, EL, where H + K + L ---- 0 

As usual, fix the reciprocal-lattice vectors H, K, L 
subject to (3.1). Suppose that the ordered N-tuple (rl, 
r 2 . . . .  , rN) of atomic position vectors is the primitive 
random variable which is assumed to be uniformly 
distributed over the N-fold Cartesian product W. Then 
the six normalized structure factors En, EK, EL, ER, Eg, 
EL, as functions of the primitive random variable (rl, 
r2, ..., rN), are themselves random variables. 

Denote by 

P = P ( R  I, R 2, R3, RT, Ri, R~; qbl, qbz, ~3, (PT, ~ ,  q~3) 
(I.1) 

the joint probability distribution of the magnitudes 
IE.I, IEKI, IELI, IEnl, lEg, I, IELI and the phases (0., 
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~K, ~0L, (ffA, ~0g, ~O[, of the six structure factors En, EK, 
EL, EA, Ego Ec whose magnitudes, (3.10), constitute the 
first neighborhood of each of the structure invariants 
(3.2)-(3.9). Then, following the early work of Karle & 
Hauptman (1958), P is given by the twelvefold integral 

RI R2 Ra Rr R:~ R:~ 
P =  

(270 I/2 
oo 2n 

× f f PlP2P3PTP~P~ 
Pt, P2, P3, Pf, P~, P~ = 0 0 t, 0.,, 0 3, 0 i, g~, 0~ = 0 

x exp{--i[R l Pl cos(0~ -- O~) 
+ R2 P2 cos(0~ -- • 2) + R 3 P3 c0s(03 -- 03) 

+ R~pr cos (~- -  0 0  + R~p~ cos(0~-- O~) 

+ R7 p~ cos(0~ -- O~)1 } 
N 

x 1-[ qj dPl dPz dP3 dp~ dp~ dp-j 
j = l  

x dO, d0:d03 d~d0~d~,  (I.2) 

where 

exp/ [Pl COS((~jH + 2zcH. rj--  01) 
/Ifjnl 

qJ= \ [ a~/2 

ilf2KI 
+ PT cos(~jn-- 2zrH.rj-- ~)1 + - -  

x [P2 COS(JsK + 2~zK.rj-- 02) 

+ p~ COS(fijK-- 2zrK. rj--  ~)] + 

a ,2 

i[ f jL I 

O~ LI/2 

X []9 3 COS(t~jL + 2zrL.rj-- 03) 

+ p~ cos(fije-2zcL, rj-0j3)] 1 )  (1.3) 
r j  ' 

The mathematical formalism devised and stream- 
lined in recent years to evaluate q j, 1-I~=l q j, and the 
twelvefold integral (I.2) has been described elsewhere 
(e.g. Hauptman, 1975a,b, 1982). This work, suitably 
modified to accommodate the anomalous scatterers, 
finally yields, after an extremely lengthy analysis, the 
remarkably simple formula: 

P ~  
R I R 2 R 3 R T R ~ R j  

re6( 1 - -  X 2) ( 1 - -  X ~ )  ( 1 - -  X 2) 

exp[ R~+R~ R E + R  2 RE+R2 / 
X 

1 - - X 2 1  1 - -  X ~  1 - -  X 1 J 
{ 2RIRTXI  cos(Ol + ~ + ~1) 

x exp 1 -- X12 

2R2R2X2 
"k- COS( O 2 "b O]~ + ~2) 

1--X~ 

2R3R3X3 } 
+ COS(I~ 3 "b t ~  + ~3) 

1 - x ]  

x exp ( 1 - X ~ ) ( 1 - X ~ ) ( 1 - X  l) 

x [Zo(R~ R2 R3 cos(O~ + 02 + 03 - ~) 

+ R~R~R~cos(OT + ¢~2 + 0 ~ -  ~)) 

+ ZI(RTR2R3 cos ( -Or  + 02 + ¢~3 - -  ~1) 

+ R1R ~ R -~ c o s (-- O ~ + cI~2 + cI~3 -- ~ a ) ) 

+ Z2(R 1 R2R 3 cos(O 1 -- O~ + • 3 -- ~2) 

+ R T R 2 R ~ c ° s ( O i -  02 + 05--  ~2)) 

"4- Z 3 ( R  1 R 2 R~ c o s ( O  I -4- ~)2 - -  ~ 3  - -  ~3) 

+ RTR~R 3 cos(OT + t~2 - • 3 - Ca))]/, 
) 

(1.4) 

where the parameters Xj, ~j ( j  = 1, 2, 3) are defined by 
(3.14)-(3.19) and the parameters Zj, ~j ( j  = 0, 1, 2, 3) 
by (3.36) and (3.37). 

The distribution (I.4), which should be compared 
with (2.10), plays the central role in the probabilistic 
theory of the three-phase structure invariants. In 
particular, the conditional distributions (3.65), the 
major result of the present paper, are derived directly 
from (I.4), as described earlier. 
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