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Abstract

The recently secured mathematical formalism of direct
methods is here generalized to the case that the atomic
scattering factors are arbitrary complex numbers, thus
including the special case that one or more anomalous
scatterers are present. Once again the neighborhood
concept plays the central role. Final results from the
probabilistic theory of the two- and three-phase
structure invariants are briefly summarized. In par-
ticular, the conditional probability distribution of the
three-phase structure invariant, given the six magni-
tudes |E| in its first neighborhood, is described. The
distribution yields an estimate for the three-phase
structure invariant which is particularly good in the
favorable case that the variance of the distribution
happens to be small (the neighborhood principle).
Particularly noteworthy is the fact that, in sharp
contrast to all earlier work, the estimate is unique in the
whole range 0 to 27z An example shows that the
method is capable of yielding unique estimates for tens
of thousands of three-phase structure invariants with
unprecedented accuracy, even in the macromolecular
case. The clear implication is that the fusion of the
traditional techniques of direct methods with
anomalous dispersion, which is described here, will
facilitate the solution of those crystal structures which
contain one or more anomalous scatterers.

1. Introduction

Most crystal structures containing as many as 80—100
independent nonhydrogen atoms are more or less
routinely solvable nowadays by direct methods. On the
other hand, it has been known for a long time
(Peerdeman & Bijvoet, 1956; Ramachandran &
Raman, 1956; Okaya & Pepinsky, 1956) that the
presence of one or more anomalous scatterers facili-
tates the solution of the phase problem; and some
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recent work (Kroon, Spek & Krabbendam, 1977,
Heinerman, Krabbendam, Kroon & Spek, 1978),
employing Bijvoet inequalities and the double Patterson
function, leads in a similar way to estimates of the sines
of the three-phase structure invariants. Again, some
early work of Rossmann (1961), employing the
difference synthesis (1Fyl — |Fgl)? in order to locate the
anomalous scatterers and recently applied by Hen-
drickson & Teeter (1981) in their solution of the
crambin structure, shows that the presence of
anomalous scatterers facilitates the determination of
crystal structures. This work strongly suggests that the
ability to integrate the techniques of direct methods, in
particular the recent advances in the mathematical
formalism, with anomalous dispersion would lead to
improved methods for phase determination. The pre-
sent paper is devoted to this task. That the anticipated
improvement is in fact realized is also shown (Tables 1
and 2 and Fig. 1). Not only do the new formulas lead to
improved estimates of the structure invariants but,
more important still, because the distributions derived
here are unimodal in the whole interval (0,27), the
twofold ambiguity inherent in all the earlier work is
removed. It is believed that this resolution of the
twofold ambiguity results from the ability now to make
use of the individual magnitudes in the first neigh-
borhood of the structure invariant and the avoidance of
explicit dependence on the Bijvoet differences; the
explicit use of the Bijvoet differences, as is done in all
previous work, leads apparently to a loss of infor-
mation resulting in a twofold ambiguity in estimates of
the structure invariants. It may be of some interest to
observe that in the earlier work with anomalous
dispersion only the sine of the invariant may be
estimated; in the absence of anomalous scatterers only
the cosine of the invariant may be estimated; as a result
of the work described here both the sine and the cosine,
that is to say the invariant itself, may be estimated.
Since, in the presence of anomalous scatterers, the
observed intensities are known to determine a unique
enantiomorph, and therefore unique values for all the
structure seminvariants, formulas of the kind described
here should not be unexpected; nevertheless not even
their existence appears to have been anticipated.
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In the present paper the final results from the
probabilistic theory of the three-phase structure in-
variant are concisely described. The joint probability
distribution of the six structure factors Ey, Ex, EL, Eg,
Eg, Ei, where H + K + L = 0, which plays the central
role in the probabilistic theory of the three-phase
structure invariant, is briefly described in Appendix I
This distribution leads directly to the major result of
this paper, equation (3.65), the conditional probability
distribution of the three-phase structure invariant,
assuming as known the six magnitudes in its first
neighborhood. Owing to their extreme length, details of
the derivations are omitted altogether. A brief account
of the two-phase invariant is also given. Particularly
noteworthy is the use of the neighborhood principle
first formulated in 1975 (Hauptman, 1975a).

In the presence of anomalous scatterers the nor-
malized structure factor

E, =1Eylexp(ign) (L.1)

is defined by

1 N
E,,:mejH exp(2niH.r) (1.2)
=i

N

1
= m | fiulexpli(dy + 27H. 1)), (1.3)

j=1
where

ﬁH: |jj'H|exp(l5jH) (1.4)

is the (in general complex) atomic scattering factor (a
function of |HI as well as of j) of the atom labeled j, r;
is its position vector, N is the number of atoms in the
unit cell, and

aH:'g | fiml . (1.5)

For a normal scatterer, d;; = 0; for an atom which
scatters anomalously, d; # 0. Owing to the presence of
the anomalous scatterers, the atomic scattering factors
Jiw» as functions of sin /4, do not have the same shape
for different atoms, even approximately. Hence the
dependence of the fj; on IHI cannot be ignored, in
contrast to the usual practice when anomalous scat-
terers are not present. For this reason the subscript H is
not suppressed in the symbols fy and ay, equation
(1.5).

The reciprocal-lattice vector H is assumed to be
fixed, and the primitive random variables are taken to
be the atomic position vectors r; which are assumed to
be uniformly and independently distributed. Then Ely,
as a function, (1.3), of the primitive random variables
r;, is itself a random variable and, as it turns out,

(Egi?), = 1. (1.6)
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2. The probabilistic theory of the two-phase structure
invariant @, + ¢y

Replacing H by H in (1.1) and (1.3), and employing

./}H = ./}ﬁ’ (2' 1)
one obtains
Ey = 1Eglexp(ipg) 2.2)
and
1 N
Ep= EI/; ful expli(dy — 27H. 1)l (2.3)
Jj=1
Thus the two-phase structure invariant,
W= 0u+ 0, (2.4)

as a function of the primitive random variables r;, is
itself a random variable. A subsidiary goal in the
present paper is to describe the conditional probability
distribution of y, assuming as known the two magni-
tudes |Eyl, |Exl which, owing to the breakdown of
Friedel’s law, are in general distinct. This distribution
leads to an estimate of the two-phase structure
invariant which is particularly good in the favorable
case that the variance of the distribution happens to be
small (the neighborhood principle). Thus the first
neighborhood of the two-phase structure invariant v is
defined to consist of the two magnitudes

|Eyl, |Eg!. (2.5)
Define Cy; and S by means of

l N

Co=— > Ifiul?cos 26y, (2.6)
J J

ay &

1 N
Su=— | fiul?sin 26, 2.7
H aH; /}H S 20y 2.7

where fiu, dn, and ay are defined in (1.4) and (1.5).
Define X and £ by means of
Xcosé=Cy,

Xsin &= —Sy, (2.8)

X=(Ch+ SE)"%, tané=—Su/Cy. (2.9)

Then the joint probability distribution of the magni-
tudes |Eyl, |1Egl and the phases ¢y, ¢q of the Friedel
pair E,, Eis given by

PR.R: 0.3) R+ R
1) ; ) = €X -
20—x?) Py 1= x?
2RRX (P+ D+ ], (2.10)
+———cos(@+ @+ O, (2.
1—x?
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and of the magnitudes |Eyl, | Egl alone by

R? + R? . 2RRX

1—x2 | 1=—x2)
.11

P(R,R)=

T Rﬁexp{—

where 1, is the modified Bessel function.

Suppose now that R and R, instead of being
variables as in (2.10) and (2.11), are fixed non-negative
numbers. Then the conditional probability distribution
of the two-phase structure invariant ¢y + @g, given that

|Eyl =R, I|Egl =R, 2.12)

is

— - (2RRX \|~!

2
2RRX w+0). @13
X exp I——ECOS + . .

From (2.11) it follows that the correlation coefficient of
the Friedel pair |El% |Egl?is
r=2X2, (2.14)

where X is defined by (2.9). Since (2.13) has a unique
maximum at ¥ = —¢, it follows that

Pu+ Oa~—¢ (2.15)

provided that the variance of the distribution (2.13) is
small, i.e. provided that

2RRX

1 —Xx?

is large. (2.16)

It should be noted that, while 4 depends on R, R and
IHI, for a fixed chemical composition ¢ depends only
on [HI (or sin #/4) and is independent of R and R.
In view of (2.9),
r=X*=Ch+ Sk (2.17)
where Cy and Sy, as given by (2.6) and (2.7), are seen
to be functions of IHI. Hence r is also a function of
IHI. It follows that if, instead of fixing H and averaging
over r;, the crystal structure is supposed to be fixed and
the correlation coefficient r of the Friedel pair (1Eyl?
|El?) is calculated for those reciprocal-lattice vectors
H for which IHI (or sin 6/1) is fixed, i.e. over a
spherical shell in reciprocal space, then (2.17) still holds
even though the corresponding average value of |Ey!?
(or of | Exi?) may no longer be unity.

DIRECT METHODS AND ANOMALOUS DISPERSION. 1

3. The probabilistic theory of the three-phase structure
invariant

3.1. Probabilistic background

It will be assumed throughout that H, K, and L are

fixed reciprocal-lattice vectors satisfying
H+K+L=0. (3.1)

Owing to the breakdown of Friedel’s law there are now
eight distinct three-phase structure invariants:

Yo=0n+ ¢k + 0, (3.2)
Wi=—0a+ 0k + O, (3.3)
Yy =0n— Ok + Oy, (3.4)
Y3 =0u+ Ok — 01, (3.5)
V= Qa+ Qg + O, (3.6)
Wi=—0n+ Ok + 01, (3.7
Yi=0a— ¥« + ¥ (3.8)
¥3=Qn+ Pg — Or- (3.9)

The first neighborhood of each of the three-phase
structure invariants (3.2)-(3.9) is defined to consist of
the six magnitudes:

\Eyl, |Exl, IE\l, {Egql, \Egl, 1Efl  (3.10)

which, again owing to the breakdown of Friedel’s law,
are not in general equal in pairs.

Fix the reciprocal-lattice vectors H, K, and L,
subject to (3.1). Suppose that the six non-negative
numbers R, R,, R;, Ry, Rz, and Rj3 are also specified.
Define the N-fold Cartesian product W to consist of all
ordered N-tuples (r;, r,, ..., 1), where r,, ry, ..., ry are
atomic position vectors. Suppose that the primitive
random variable is the N-tuple (r,, r,, ..., ry) which is
assumed to be uniformly distributed over the subset of
W defined by

|Egl =R,, |Exl=R,, I|E|=R, (3.11)
|Eql =Ry, |Egl=R;, |Efl=R;, (3.12)

where the normalized structure factors E are defined by
(1.2). Then the eight structure invariants

l//js W]a.]: Os 19 29 35 (3']3)

(3.2)-(3.9), as functions of the primitive random
variables (r,, r,, ..., ry), are themselves random
variables.

Our major goal is to determine the conditional
probability distribution of each of the three-phase
structure invariants (3.2)-(3.9), given the six magni-
tudes (3.11) and (3.12) in its first neighborhood, which,
in the favorable case that the variance of the distri-
bution happens to be small, yields a reliable estimate of
the invariant (the neighborhood principle).
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3.2. Notation and definitions

Cy and Sy have already been defined {(2.6) and
(2.7]. In a similar way Cg, Sk, C\, and S are defined.

Then X, &, X,, &, X5, & are uniquely defined by
equations (3.14)—(3.19):

X,cos & ="Cy, X,sin¢ =—Sy, (3.14)
S
tan & = — —~, X,=(Ch+ SHY2. (3.15)
Ch
X,cos &, =Ck, X,siné,=—Sk, (3.16)
S
tan & = ——, X,=(C%+ S (3.17)
Ck
Xycosé=Cp, X;siné& =-S5, (3.18)
St

tan ¢’3=—6—, X;=(Ct+ SpHY%.  (3.19)

L

Next, make the definitions:
N

Cuke=—"——2 > S ful cos(;
HiEE (aHaKaL)m; mJik JiL -
+ gk + Ju), (3.20)
N
Suke =————= > | fiuSix fil sin(u
(aHaKaL)m;
+ O+ du). (3.21)
1 N
s s s
Ch (aHaKaL)l/zjgl‘fJ‘Hj;Kjl‘L cos(—du

+ 0k + 0y), (3.22)

1 N
SHKL=—, !.f_["H .f}K ./_;'Ll Sin(“'éjH
(agaga)! 2;

+ 0k + 0). (3.23)

N
ChgL=——— | fiu fix Sl cos(d;
HKL (aHaKaL)I/zjgl JHJjKJjL JH
— 0k + 0), (3.24)
1 N
SurL=—— |./J“H./J“Kfj“L| Sin(éjH
(aHaKaL)l/zi:Z
— O + 5_,[) (325)
N
Cuki=———> | finSix il Cos(aju
(aHaKaL)UZZ;

+ 5jK — 5jL)’ (3.26)

1 N
Shkr = —)1/5 Z 1./}Hf}|(/}L| Sin(&jﬂ
j=1

(agagag

+ 8k —61). (3.27)

Yo= Cukill — (CyCx CL— Cuy Sk SL— SuCxk S

— SuSk C) + Sukil SuSk St — SuCx Cu
— CuSxCL— CuCx Su]

+ Crk[—Ch + (Cx CL — Sk S1)}

+ Sk Su + (Ck SL + Sk Cu)l

+ Curl—Ck + (Cu CL — Su S1)]

+ Surd Sk + (CuSL + Sy C)l

+ Cukil—Cp + (Cu Cx — SuSk)]

+ SukilSL+ (Cu Sk + SuCy)l. (3.28)

0y = Cux Sy Sk S — SuCx CL — Cy Sk C1

— CuCxSu) + Shkill + (CCx Cy.
—CuSkSL—SuCkSL— SuSk C)l

+ Cakd=Su + (Ck Sy + Sk CL)]

+ SakLl=Cu— (Ck CL— Sk SV)]

+ Curdl =Sk + (CuSL + Sy C)!

+ Surl—Cx — (Cy CL — Sy Sy

+ Cukil[—=SL + (Cy Sk + SuCy))

+ Suktl—CL— (Cy Cx — SuSk)l.  (3.29)

"1 = Cukdl[—Cu + (Ck Co— Sk S0

+ Sukl=Su + (Cx S + Sk Cp)]

+ Chkl1 = (Cy Cx €L — Cy Sk S

+ SuCx S+ SuSkCL)

+ Sakl—(Su Sk SL — Sy Ck CL + Cy Sk C1.

+ Cu Cx SV + Cuge[—Cp + (Cu Ck

+ SuSK)l + Suri[—SL — (Cy Sk

—SuC)] + Cukil—Cx + (Cy Cp.

+ SuSUl + Sukil—Sk — (Cu Sy — SuCu)l.
(3.30)

6, = CukilSu+ (Cx S+ Sk col

+ Syk[—Cu— (Cx CL— Sk SU)]

+ Cakl—(Su Sk SL— SuCk CL + Cu Sk Co
+ CuyCxSUI + Sakd !l + (CyCk Co
—CySkSL+ SuCxSL+ SuSkCI

+ Cygl =S+ (Cy Sk — Su Cy)l

+ SurCL + (CuCx + Su Skl

+ Cukil—Sk + (CuSL— SuCL)!

+ SukilCk + (CuCL + Sy SVL (3.31)
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72 = Cukll—Cx + (CyC— Sy S))!

+ Syk=Sk + (Cu S+ SyCI

+ Cakl—Cp + (Cx Cy + Sk Sw)l

+ Saku[=SL — (Ck Sy — Sk Cw)l

+ Curll — (CHCk CL + C Sk Sy

—SuCk S+ SuSkCL)l

+ Suril—(Su Sk SL+ SuCx CL — Cu Sk C,

+ CyCx SP] + Cukil—Cy + (Cx C,.

+ Sk SO + Sukil—=Su— (Cx Su — Sk Cl.
3.32)

0; = Cyux[ Sk + (CuSL+ Sy C)l

+ Sk —=Cx — (CyCL — Sy S1)]

+ Caku[=SL + (Cx Sy — Sk Cw)l

+ Sak[CL + (Cx Cy + Sk Su)l

+ Curi[—(Su Sk SL+ SuCx CL— Cy Sk C.
+ CuCx S + Syrill + (CCx C

+ CySkSL— SuCkSL+ SySkCI

+ Cukil=Su+ (Cx S — Sk C)]

+ SukilCu + (Ck Cp + Sk S (3.33)

73 = Chkl[—C + (CyCx — Sy Sk)!

+ Suk[—SL + (Cy Sk + S Cy)l

+ Cakl—Ck + (CL.Cy + S Swl

+ Saki—Sk = (CLSu — S Cy)]

+ Curl—Ch + (CLCk + S SW)!

+ Sur—Sy— (CL Sk — SL.Cy)l

+ Cukill = (CCx CL— Cy Sk St

+ SuCx SL— SuSkCo)l

+ Sukil—(Sy Sk SL + SuCxk CL + Cy Sk CL.
= CuCy SV (3.39)

03 = CuilSL + (Cy Sk + Sn Cl

+ Sukl—CL— (Cy Ck — Sy Sy

+ Cak =Sk + (CLSw — SL.Cw)

+ SakilCk + (CLCy + S Syl

+ Cug=Su + (CL Sk — SLCW)I

+ SurlCu + (Ck C + S SV

+ Cukil =(Su Sk SL+ SuCk CL + Cy Sk CL.
— CuCx SV + Sukill + (CyCx C,

+ CuSkSL+ SuCxSL— SySkCI. (3.35

Then Z; and {;, j = 0, 1, 2, 3, are uniquely defined by
equations (3.36) and (3.37):

Zicos L=y, Z;sin{;=0; j=0,1,2,3. (3.36)

.
tan §;=—, Z,=(y}+ )%, j=0,1,2,3. (3.37)
Vi
In the definitions which follow R |, R,, R;, Ry, R5, R3
are the fixed values of the six magnitudes 1Eyl, 1E.],
|E |, |Egl, |ER], |E¢l, respectively [(3.11) and (3.12)],
and 7,, 7,, 7, are defined by

L [ 2RRs X,
"\ 1—x?

= j=1,2,3.
! (2R iR X; ) /
Io| ———~
1—X;
where I, and I, are the modified Bessel functions and

X,, X,, and X, have been defined in (3.15), (3.17), and
(3.19).

(3.38)

Co=Z\R,R,R;cos {; + RiR;R5 7, 7, 74
x cos(& + & + & + &)
+ Z,[R1R, Ry, cos(¢, — &)
+ R, R3R51,15c08(& + & + &)l
+Z,|R,RsR,1,cos(&— &)
+RyR, Ry 1yc08(¢, + & + §)l
+Z3 R, Ry Ry1ycos(&— &)

+RiR3R 1, 1,c08(¢, + &+ ). (3.39)

So=Z,R,R,R;sin{;— R{R; R57, 1, 1,
xsin(, + & + & + &)l
—Z,|RiR, Ry 1, sin(&, — ()

+ R, R;R37, 1y sin(& + & + &)l
—Z,|R, R R, 1,5in(& — &)
+ RiR,R37, 1ysin(é, + & + ()
—Zy|R, R, Ry1ysin(&; — &)

+ RiR;R 7,1, sin(& + & + G (3.40)

C,=ZJR,R,Ryt,cos({, + &) + RiR;R31, 14
x cos(& + &+ ¢l + Z IRy R, Ry cos ¢
+ R, R3Rs1 1y15co8(—& + & + &5 + ()]
+ Z,JR,R;R; 1, 1,c08(E, — & + ()
+ RiRy Rytycos(&; + §)
+ZyJR, Ry Rzt 1yc08(&, — &+ ()

+ RiR; R, 1, cos(&, + G- (3.41)
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S1=ZyR,R,Ry7;sin(¢, + §) — RiR5R5 7, Ty

xsin(& + & + L)l + Z[Ry R, R, sin ¢,

— R R:R37, 1, 1y sin(—& + & + & + ()]
+Z)IR R3Ry 7, 1,sin(&, — & + )
—RiR, R375sin(&; + §)]

+ Z3 Ry Ry R3 7y 7y 8in (&, — & + §)

= RiR; Ry 7, sin(&; + §)). (3.42)

Cy=ZyR, R, R 1, co8(& + &)

+ RiR3R37, 7y cos(&, + & + &)

+ Z\[RiRyR 1 1y cos(—¢, + & + ()

+ R R3R315cos(&; + {)]

+ Z, R, R3R;cos {,

+ RiR,R37 1, 15c08(8, — & + & + )l

+ Z R, RyR37,15c08(& — & + &)

+ Ri Rz Ryt cos(¢ + §)l. (3.43)

S;=ZJ|R,R,Ry1,sin(&, + &)

—RiR3R37 75 sin(¢, + & + §)]
+Z\[R{R, Ryt 7,sin(—¢, + & + ()

— R, Ry R3 1y sin(&; + §,)]

+ Z,|R,R;Rysin {,

—RiR Ryt tytysin(é, — & + & + ()]

+ Zy R, Ry Ry7, 13 sin(&, — & +'¢3)
—RiR3R; 7, sin(¢ + §)l. (3.44)

C;=ZR,R,R;y1ycos(&5 + &)

+RiR5R57,17, cos(¢, + & + §)]

+Z |R1R,Ry1 T5c08(—¢, + & + ()

+ R, R3R37;,cos(&, + )]

+ Z,|R,R3R; 1,13 c08(—&, + & + &)

+ R1R, Ryt cos (¢, + &)l

+ Z,|R, R, R3cos {;

+RiR;R 1, 7y15c08(E + & — & + §)I.
(3.45)

S;=Z, R, R, R;1ysin(& + &)

—RiR3Ry1 7, sin(é + &+ &)l

+ Z\[RiR,Ry1, 1ysin(—¢&, + & + ()

— R, R3R;37;sin(&, + ¢

+ Z[R R3Ry 1, 7y sin(—& + & + &)

—RiR, Ryt sin(¢, + §H)I

+ Z,[R, R, R3sin {;

—R{R;R; 7, 7,13 sin(8, + &, — & + ()l
(3.46)

Co=ZR, R, Ry1 1, 75c0s(&, + & + & + ()

+ R1R; R5cos &

+Z|[RiR, Ry, 15c08(, + & + ()

+ R R3 R37, cos (¢, — {))l

+ Zy R, R3R 7, 75c08(¢, + & + &)

+ RiR, R31,cos(&, — &)l

+ Zy R, Ry R31 1, c08(8, + & + ()

+ Ry Rz R; 7y cos(& — &), (3.47)

So=Z—R,R,Ry1, 1, 1ysin(& + & + & + ()

+ RiR; Rjsin §

—Z\|RiR, Ry, Ty sin(&, + & + )

+ R, R3R57sin(¢, — )l
—Z,|R,R3R 7, 1ysin(& + & + &)

+ RiR, R31,sin(&, — )l

—Z R, Ry R31, 1y sin(&, + & + &)

+ RyR3R; 73 sin(& — §). (3.48)

Ci=Z|R,R,R;1,1yc0s(& + & + &)

+ RiR3R37, cos(¢, + &)
+Z,[RiR,R;7, 7,7y cos(—¢&, + &,

+ &+ )+ R, Ry R5cos (]

+ Z R, R3 R, Tyco8(& + &)

+ RiR, R37, 7y c08(§, — & + §)

+Z,[R R, Ryt,cos(&, + &)

+ RiR;R 7, 15c08(E — &+ &)l (3.49)

S1=Z)—R,R,R;7,1ysin(&, + & + )

+ RiR; R3t sin(&) + §)l

+ Z [—RiR, R, 7, 7,7, sin(—¢, + &

+ ¢+ &)+ R R;Rysin (]

+ Z,[—R,; R R; tysin(&; + §,)

+ RiR, R37,1,8in(¢, — & + ()]

+ Z4[—R, R, Ry 7y sin(& + ;)

+RiRsR; 7 7ysin(é — &+ Gl (3.50)

3=Z R, Ry Ry 7, 75co8(&, + & + &)

+ R1RzR31,cos(&, + )l

+ Z,|RiR, Ry 15c08(& + ()

+ R, R5R37,7,co8(—¢, + & + )]

+ Z,[R R3R 1, 7,75 cos (&, — &

+ &+ &) + RiR3R3cos (]

+ Z3|R, R, R31,cos(& + &)

+ RiR;R;7,1yc08(6— &+ &) (3.51)
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Ss=Z—R, R, R;1,15sin(&; + & + &)
+ RiR3 Ry1ysin(&, + )l

+ Z =Ry Ry Ry 1ysin(& + ¢)

+ R, R3R31, 1y sin(—¢, + & + )
+ Z,|—R,R: R, 1, 1, 1y sin(&, — &
+ &+ )+ RiR; Rysin &

+ Zy—R, R, R51,sin(& + ()

+ R{R; Ry 7, 7y sin (&, — & + Gl

&)

(3.52)

Ci=ZR,R,R 1, 7,c08(& + & +
+ RyR; R31ycos(&; + &)l
+ Z,IRiR, R, 7, cos(é, + ()
+ R R3R31, 1y cos(—¢, + &+ ()]
+ Z,lR,R5 R, 1, cos(&, + &)
+ RiR, Ry 7, 15c08(=&, + & + ()]
+ Z3|R,RyR31, 7,1y cos (& + &,

— &+ §3)+ RiR3 R cos Gl (3.53)

=ZJ|—R,R,R; 7, 1,sin(¢ + & + &)
+ RiR;R31ysin(& + &)l
+Z |-R1R, R, 1,sin(& + )
+ R, R3R37, 1y sin(—¢, + & + &)
+ Z,|—R, R5 R, 7, sin(&, + &)
+ RiR, Ryt 1y sin(—& + & + ()]
+ Zy|—R, R, R31, 7, 1y sin(¢, + &

- é; + C;) + RTR§R3 sin (;l (3.54)

Next, B, wJBJ, and w; j = 0, 1, 2, 3, are uniquely
defined by equations (3. 55) —(3.58):

Bjcos w;=C;, B;sinw,=S, j=0,1,2,3,(3.55)

S,
tanwjz—c—j, B;=(C}+ S)H", j=0,1,2,3,(3.56)

J

B;cos w;=C; Bjsinw; =85 j=0,1,2,3,(3.57)
J J J J J J

tan w; = —J,
= C-

7

B;=(Ci+ SHY: j=0,1,2,3,

(3.58)

where C;, S§;, C; S; are given by equations (3.39)-
(3.54). Finally, 4 ;, 45, K ;, and K; are defined by

2B,
Aj: L} j:0!132333
(1-X)(1—X)(1—X)

(3.59)
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d:= 2B; , j=0,1,2,3,
T =-x)-XH(-XxY
(3.60)
K;=2nly(4), j=0,1.2,3, (3.61)
K;: 27zIo(A;), Jj=0,1,2,3, (3.62)

where X,, X,, and X; have been defined in (3.15),
(3.17), and (3.19), respectively.

3.3. The conditional probability distribution of each of

lhe three-phase structure invariants v;,j=0,1,2,3, 0,
, 2, 3, (3.2)-(3.9), given the six magnitudes \Eyl,

IEKI |E |, |[ERQl, |Egl, |Eg| in its first neighborhood

Refer to § 3.1 for the probabilistic background. Then
the eight three-phase structure invariants

Wja j = 0’ 15 29 39 6a Ta is 5’ (3'63)

(3.2)-(3.9), as functions of the primitive random
variable (r;, r, ..., ry), are themselves random
variables. Denote by

P;(£2,IR,R,, Ry, R1, R5, R3) = P{(R2)),
j=0,1,2,3,0,1,2,3, (3.64)

the conditional probability distribution of each w;,
assuming as known the six magnitudes (3.11) and
(3.12) in its first neighborhood. Then Py(£2,), for
example, is obtained from (1.4) of Appendix I by fixing
R,, R,, R;, Ry, R3, R3in accordance with (3.11) and
(3.12), integrating P [equation (I.4)] with respect to @,
@5, D5 between the limits 0 and 27, and multiplying by
a suitable normalizing parameter. Again, P,(£2,) is
obtained from (1.4) in a similar way except that the
integrations are taken with respect to @,, ®;, @5, etc.
The final formulas, the major results of this paper, are
simply

1
P.(N)=—
=%

j=0,1,2,3,0,1,2,3, (3.65)

where the parameters 4;, K;, w; are defined by
3. 20)—(3 37, (3 38)-(3. 54), and (3 55)-(3.62). Since
the K;’s and 4;’s are positive, the maximum of (3.65)
occurs at 2, = w;. Hence, when the variance of the
distribution (3.65) is small, i.e. when 4, is large, one
obtains the reliable estimate

v,=w;, j=0,1,2,30123  (3.66)

for the structure invariant y;, (3.2)-(3.9). It should be
emphasized that the estimate (3.66) is unique in the
whole interval (0,27) lor, equivalently, (—x,+7)] and is
explicitly expressed via (3.20)—(3.65), together with the
weight 4, in terms of the complex scattering factors
Jims fixs> JiL» presumed to be known, and the observed

exp{d; cos(2; — w)!,
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Table 1. Twenty-one estimates w; (°) of the structure invariants y, (°) sampled from the top 2000 for the PtC13-
derivative of Cytochrome ¢,

Serial
no. IEyl IEq! IEg! |ER! IEL
1 2-17 2.04 0-89 1.03 0-85
100 1-91 2-06 1-61 1-49 0-85
200 1-91 2-06 1-96 2:06 1-41
300 2.36 2.48 1-56 1-69 0-82
400 2-17 2.04 1-34 1-48 1.28
500 1-85 1.94 0-85 0-67 0-78
600 217 2-04 0-92 1-04 0-86
700 1-39 1-28 0-85 0-67 0-87
800 1-41 1.57 1-61 1-49 0-71
900 1-88 1.98 1.28 1-15 0-85
1000 1.29 1.43 0-79 0-71 0-85
1100 1-34 1-48 1.34 1.22 1.25
1200 1-56 1-69 1-41 1-57 0-98
1300 1-98 2-07 2-08 1-94 1-08
1400 1.56 1.67 1-41 1.57 1-24
1500 2.38 2-50 1.91 2-06 0-74
1600 1-91 2-06 1-34 1-22 0-72
1700 1-91 2-06 2-02 2-12 2:15
1800 2.38 2-50 1-61 1-49 0-78
1900 2-38 2-50 1-63 1-70 1-81
2000 0-85 0-67 0-97 0-83 1.02

IEf |

0-67
0.67
1-57
0-68
1-15
0-92
0-70
0-75
0-85
0-67
0-67
1-16
0-90
121
1-33
0-64
0-83
2.24
0-90
1-93
1.09

Ai
6-92
5-62
4.83
4.52
4.31
4.21
4-10
4.02
3-93
3.87
3-80
3-76
3-72
3-68
3-63
3.59
3.55
3.51
3.46
3-43
3.42

Estimated
value w;
of y;

—58
148
-79
52
79
56
146
=72
70
104
—88
-72
73
—161
-72
84
—64
—64
78
63
—96

True
value
of y;
—88
130
—121

96

—126

Magnitude of
the error
lw; —

30

magnitudes |Eyl, |Egl, |E.|l, |Egl, |Eg!, |Egl, (3.11)
and (3.12). No prior knowledge of the positions of the
anomalous scatterers is needed, nor is it required that
the anomalous scatterers be identical.

4. The applications

Using the presumed known coordinates of the PtCl2~
derivative of the protein Cytochrome ¢y, from Para-
coccus denitrificans (Timkovich & Dickerson, 1976),
molecular weight M, ~ 14 500, space group P2,2,2,,
some 8300 normalized structure factors E [(1.3) and
(2.3)] were calculated (to a resolution of 2:5 A). In
addition to the anomalous scatterers Pt and Cl, this
structure contains one Fe and six S atoms which also
scatter anomalously at the wavelength used (Cu Ka).
Using the 4000 phases ¢, corresponding to the 4000
largest |E,,l’s with hkl # 0, the three-phase structure
invariants v;,j =0, 1,2, 3,0, 1, 2, 3, [(3.2)—(3.9)] were
generated and the parameters w; and 4; [(3.55)
(3.60)], needed to define the distributions (3.65), were
calculated. All calculations were done on the VAX
11/780 computer; double precision (approximately 15
significant digits) was used in order to eliminate
round-off errors. The values of the 4 ’s were arranged
in descending order and the first 2000, sampled at
intervals of 100, were used in the construction of Table
1; the top 60 000 were used for Table 2.

Table 1 lists 21 values of 4, sampled as shown from
the top 2000, the corresponding estimates w; (in
degrees) of the invariants v, the true values of the Y
and the magnitude of the error, lw; — y,l. Also listed

Table 2. Average magnitude of the error (°) in the top

60 000 estimated values of the three-phase structure

invariants, cumulated in the nine groups shown, for
the PtC1Z~ derivative of Cytochrome cs.,

Average
Group Number in Average magnitude of
no. group value of 4 error
1 100 6-01 27-9
2 500 4-90 29.3
3 1000 4.44 28-8
4 2000 4.02 280
5 5000 3.49 31.4
6 10000 3.09 33-8
7 20000 2.71 36-1
8 40000 2-35 38-6
9 60000 2-15 39.8

are the six magnitudes | E| in the first neighborhood of
the corresponding invariant.
Table 2 gives the average magnitude of the error,

(w;—w;l), 4.1)

in the nine cumulative groups shown, for the 60 000
most reliable estimates w; of the invariants v

Tables 1 and 2 show firstly that, owing to the
unexpectedly large number of large values of 4;, our
formulas yield reliable (and unique) estimates of tens of
thousands of the three-phase structure invariants.
Secondly, the invariants which are most reliably
estimated lie anywhere in the range from —180 to
+180°, and appear to be uniformly distributed in this
range (Columns 9 and 10 of Table 1). Finally, in sharp
contrast to the case that no anomalous scatterers are
present, the most reliable estimates are not necessarily
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of invariants corresponding to the most intense
reflections but of those corresponding instead to
reflections of only moderate intensity (Columns 2—7 of
Table 1).

Fig. 1 shows a scatter diagram of w; versus y; for
the PtCli~ derivative of Cytochrome cs,, using 201
invariants sampled at intervals of length ten from the
top 2000, as well as the line w; = ;. Since the line falls
evenly among the points, it appears that the w; are
unbiased estimates of the invariants ;.

5. Concluding remarks

In this paper the goal of integrating the techniques of
direct methods with anomalous dispersion is realized.
Specifically, the conditional probability distribution of
the three-phase structure invariant, assuming as known
the six magnitudes in its first neighborhood, is obtained.
In the favorable case that the variance of the
distribution happens to be small, the distribution yields
a reliable estimate of the invariant (the neighborhood
principle). It is particularly noteworthy that, in strong
contrast to all previous work, the estimate is unique in
the whole interval (0,27) [or, equivalently, (—n,7)] and
that any estimate in this range is possible (even, for
example, in the vicinity of +7/2 or 7). The first
applications of this work using error-free diffraction
data have been made, and these show that in a typical
case some tens of thousands of three-phase structure
invariants may be estimated with unprecedented
accuracy, even for a macromolecular crystal structure.
Some preliminary calculations on a number of struc-
tures, not detailed here, show that the accuracy of the
estimates depends in some complicated way on the
complexity of the crystal structure, the number of
anomalous scatterers, the strength of the anomalous

180
140
100

60

w; (Degrees)
=)

—100

—140

—180
—220—180—140—100—60 —20 020 60

w; (Degrees)

100 140 180 220

Fig. 1. A scatter diagram of w; versus y;, using 201 invariants
sampled at intervals of length ten from the top 2000, for the
PtCl;~ derivative of Cytochrome c;s, as well as the line w; = y;.
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signal, and the range of sin /4. With smaller structures
the accuracy may be greatly increased, average errors
of only three or four degrees for thousands of invariants
being not uncommon.

Inspection of the formulas, in particular (3.39)
(3.58), shows that the estimates, w;, are relatively
insensitive to errors in the observed |E|l’s provided that
these errors are positively correlated for the Friedel
pairs |Eyl, |Egl. However, a detailed study of the effect
of experimental errors is outside the scope of the
present paper and will be presented at a future date.

It should be stated in conclusion that the availability
of reliable estimates for large numbers of the three-
phase structure invariants implies that the traditional
machinery of direct methods, in particular the tangent
formula, suitably modified to accommodate the non-
zero estimates of the invariants, may be carried over
without essential change to estimate the values of the
individual phases and thus to facilitate structure
determination via anomalous dispersion. In view of the
calculations summarized in Tables 1 and 2 and Fig. 1,
it seems likely that, in time, even macromolecules will
prove to be solvable in this way. It is clear too, that,
owing to the ability to estimate both the sine and cosine
invariants, that is to say both the signs and magnitudes
of the invariants, the unique enantiomorph determined
by the observed intensities is automatically obtained.
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Gopinath Kartha, Jan Kroon, and Sivraj Ramaseshan
for the benefit of some helpful discussions, and Stephen
Potter who wrote the computer programs and per-
formed the calculations summarized in Tables 1 and 2
and Fig. 1. This work was supported by DHHS Grant
No. GM26195, Grant No. CHE-7911282 from the
National Science Foundation, and a grant from the
James H. Cummings Foundation, Inc.

APPENDIX 1
The joint probability distribution of the six structure
factors Ey, Ex, E,,Eq, Eg, E;,where H+ K+ L =0

As usual, fix the reciprocal-lattice vectors H, K, L
subject to (3.1). Suppose that the ordered N-tuple (r,,
r,, ..., Iy) of atomic position vectors is the primitive
random variable which is assumed to be uniformly
distributed over the N-fold Cartesian product W. Then
the six normalized structure factors Ey, Ex, E1, Eg, Eg,
Ej, as functions of the primitive random variable (r,,
f,, ..., Iy), are themselves random variables.
Denote by

P:P(Rla Rz’ R3s RT’ Riv Ri; (bl, (1)2, (1)3, ¢]_s (1)7, ‘p§)
1.1

the joint probability distribution of the magnitudes
|Eyl, |Exl, |E.), |Egl, |[Eg!, |Eg! and the phases ¢y,
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ks O, O, Pk, ¢ of the six structure factors Ey, Ey,
E,, Eg, Eg, Er whose magnitudes, (3.10), constitute the
first neighborhood of each of the structure invariants
(3.2)-(3.9). Then, following the early work of Karle &
Hauptman (1958), P is given by the twelvefold integral

P R,R,R,RiR:R>

(27!)1/2
© 2=
X f f PP P3 P1PID3

Pus Pas Py Pis P31 P53 =0 6,,6,,6,,6;,05,05=0
x exp{—ilR, p, cos(6, — ®,)
+ R, p, cos(8, — D,) + Ry p; cos(8; — D,)

+ Ry py cos(6y — D7) + Rz pacos(6r— D3)
+ Rz ps cos (65 — D3)]}

N
x [] q;dp, dp,dp;dpidpadps
ji=1

x d6, d6, dé, d6; d6;dbs, L.2)
where
il il
q;= <exp{ aljf: [p, cos(d + 27nH.x;— 6,)
H

il fixl

+ prcos(dy — 2nH.r; — &) + a.;”

X [p, cos(djx + 27K.r;— 6,)
il fil

+ p3cos(d;x — 2nK.r; — &)] + a,fjfl

x [p;3cos(d;. + 2nL.1r;— 6;)

+ pscos(d;, — 2nL.r; — 05)]}> . (1.3)
S

The mathematical formalism devised and stream-

lined in recent years to evaluate g, H;’:, q;, and the

twelvefold integral (I.2) has been described elsewhere

(e.g. Hauptman, 1975a,b, 1982). This work, suitably

modified to accommodate the anomalous scatterers,

finally yields, after an extremely lengthy analysis, the
remarkably simple formula:

R,R,R,RiR; R3
T (- X)(1-XH(1 - XD

R}+R? RI+R} Ri+R}
X eXp{— - -
PP 1o x 1-xd

cos(P, + P+ &)

641

2R, R; X,
1—x2

R, o on )
+ ————=cos(P; + D3+
1— X2 TR

cos(D, + D5+ &)

2
A-xHA-xH1-X;
X [Zo(R, R, Rycos(P, + D, + @, — ()
+ RiR3R5cos(Py + D3+ P3— ()
+ Z,(RiR,Rycos(—P;+ D, + D, — ()
+ R RyR3c08(—=P, + &3+ B3— ()
+ Z,(R,R5Rycos(P, — D3+ &, — ()
+ R7R, Rycos(Pr— D, + &3 — ()
+ Zy(R, R, R5co8(P, + &, — D3~ ()

X €Xp

+ R{R;R, cos(P; + &; — &, — C3))1], (1.4)

where the parameters X, éj (j =1, 2, 3) are defined by
(3.14)(3.19) and the parameters Z,, {; (j =0, 1, 2, 3)
by (3.36) and (3.37).

The distribution (I.4), which should be compared
with (2.10), plays the central role in the probabilistic
theory of the three-phase structure invariants. In
particular, the conditional distributions (3.65), the
major result of the present paper, are derived directly
from (1.4), as described earlier.
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